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Estimation and inference in spatially varying
coefficient models

Jingru Mua Guannan Wangb and Li Wanga∗

Summary: Spatially varying coefficient models (SVCMs) are a classical tool to explore the spatial

nonstationarity of a regression relationship for spatial data. In this paper, we study the estimation and

inference in SVCMs for data distributed over complex domains. We use bivariate splines over triangulations

to represent the coefficient functions. The estimators of the coefficient functions are consistent, and rates of

convergence of the proposed estimators are established. A penalized bivariate spline estimation method is

also introduced, in which a roughness penalty is incorporated to balance the goodness-of-fit and smoothness.

In addition, we propose hypothesis tests to examine if the coefficient function is really varying over space

or admits a certain parametric form. The proposed method is much more computationally efficient than

the well-known geographically weighted regression technique and thus usable for analyzing massive datasets.

The performance of the estimators and the proposed tests are evaluated by simulation experiments. An

environmental data example is used to illustrate the application of the proposed method.

Keywords: bivariate splines; bootstrap test; penalized splines; permutation test; spatial data; triangulation.

1. INTRODUCTION

In spatial data analysis, a common problem is to identify the nature of the relationship

that exists between variables. In many situations, a simple “global” model often cannot

explain the relationships between some sets of variables, which is referred to “spatial non-

stationarity”. To handle such nonstationarity, the model needs to reflect the spatially varying
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structure within the data. In this paper, we investigate a class of spatially varying coefficient

models (SVCMs) to explore the spatial non-stationarity of a regression relationship. The

data in our study need not be evenly distributed, instead, we assume the observations are

randomly distributed over two-dimensional domain Ω ⊆ R2 of arbitrary shape, for example,

a polygonal domain with interior holes. Suppose there are n random selected locations, and

let Ui = (Ui1, Ui2)> be the location of i-th point, i = 1, . . . , n, which ranges over Ω. Let Yi

be the response variable and Xi = (Xi0, Xi1, . . . , Xip)
> with Xi0 ≡ 1 being the explanatory

variables. Suppose that {(Ui,Xi, Yi)}ni=1 satisfies the following model (Brunsdon et al., 1996,

1998; Fotheringham et al., 2002; Shen et al., 2011)

Yi = X>i β(Ui) + εi =

p∑
k=0

Xikβk(Ui) + εi, i = 1, . . . , n, (1)

where βk(·)’s are unknown varying-coefficient functions, and εi’s are i.i.d random noises with

E (εi) = 0 and Var (εi) = σ2, and independent of Xi. Our primary interest is to estimate and

make inferences for β = (β0, β1, . . . , βp)
> based on the given observations {(Ui,Xi, Yi)}ni=1.

When βk(·)’s are univariate functions, model (1) is the typical varying coefficient model

which has been extensively studied in the literature (Hastie and Tibshirani, 1993; Fan and

Zhang, 1999; Xue, 2006; Ferguson et al., 2009; Tang and Cheng, 2009; Lian, 2012). In

this paper, βk(·)’s are bivariate functions of locations, and model (1) allows the regression

coefficients to vary over space and therefore can be used to explore spatial non-stationarity

of the regression relationship via the spatial variation patterns of the estimated coefficients.

In the past decade, SVCMs have been widely applied to a variety of fields including

geography (Su et al., 2017), ecology (Finley, 2011), econometrics (Bitter et al., 2007; Helbich

and Griffith, 2016; Al-Sulami et al., 2017), epidemiology (Nakaya et al., 2005), meteorology

(Lu et al., 2009), and environmental science (Waller et al., 2007; Hu et al., 2013; Tang, 2014;

Huang et al., 2017).

There is a rich literature on how to estimate SVCMs. Two competing methods are the
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Bayesian approach, see Assunção (2003); Gelfand et al. (2003), and the local approach, such

as the geographically weighted regression (GWR) technique (Brunsdon et al., 1996, 1998;

Fotheringham et al., 2002). The Bayesian procedure is carried out by assuming a certain

prior distribution of the coefficients and computing their posterior distribution on which the

estimation and inference are performed. However, there is no correct way of choosing a prior.

In practice, misleading results will be generated if one does not choose prior distributions with

caution. In addition, for a large dataset with many variables being estimated, the Bayesian

method may be prohibitively computationally intensive. The GWR method estimates the

coefficients in the traditional regression framework of kernel smoothing. It incorporates local

spatial relationships into the regression framework in an intuitive and explicit manner. While

this local kernel-based approach is very nice and useful, it becomes very computationally

intensive for large datasets as it requires solving an optimization problem at every sample

location. Typically, the GWR model fitting and spatial prediction require O(n2) operations

for a data set of size n. Recent evolutions in technology provide increasing volumes of spatial

data (Banerjee et al., 2008; Zhang et al., 2013), which is beyond the computing limit of

the traditional Bayesian and GWR method. It is urgent to develop a more computationally

expedient tool for analyzing spatial data.

Tang and Cheng (2009) and Lu et al. (2014) proposed a B-spline approximation of the

coefficient functions. The method is fast and efficient since it inherits many advantages

of spline-based techniques. However, the data are required to be regularly spaced over a

rectangular domain. In practice, spatial data are often collected over complex domains

with irregular boundaries, peninsulas and interior holes. Many smoothing methods, such

as kernel smoothing, tensor product smoothing and wavelet smoothing, suffer from the

problem of “leakage” across the complex domains, which refers to the poor estimation over

difficult regions by smoothing inappropriately across boundary features; see the discussions

in Ramsay (2002); Wood et al. (2008); Sangalli et al. (2013).
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In this paper, we develop a powerful and efficient method to estimate SVCMs for data

distributed over two-dimensional complex domains. Our method tackles the estimation

problem differently from the local approach, and the coefficient functions βk(·)’s are

approximated using the bivariate splines over triangulations in Lai and Schumaker (2007)

and Lai and Wang (2013). The proposed estimator solves the problem of “leakage” across

the complex domains. Another advantage of this approach is that it can formulate a global

penalized least squares problem, thus it is sufficiently fast and efficient for the user to analyze

large datasets within seconds. In addition, under the independence error condition, which

is not uncommon in the GWR literature (Brunsdon et al., 1996, 1998; Shen et al., 2011;

Huang et al., 2017; Su et al., 2017, for example), we show the proposed coefficient estimators

converge to the true coefficient functions.

An important statistical question in fitting SVCMs is whether the coefficient function

is really varying over space (Brunsdon et al., 1999; Leung et al., 2000), which amounts

to testing if the coefficient functions are constant or in a certain parametric form. In the

pioneering work of GWR by Brunsdon et al. (1996), two kinds of permutation test are

proposed for global stationarity and individual stationarity, respectively. For the individual

test, the variability of the estimated coefficient function is used to describe the plausibility

of a constant coefficient. Brunsdon et al. (1999) developed a test via comparing the residual

sum of squares (RSS) from the GWR estimation with that from the ordinary least square

estimation for the null hypothesis of global spatial stationarity. Moreover, Leung et al. (2000)

introduced another RSS based statistics to test for the global stationarity of the regression

relationship. Motivated by many sophisticated statistical inferential problems in a variety of

areas and fueled by the power of modern computing techniques, bootstrap methods get

increasingly popular during the past two decades. For example, Mei et al. (2006) used

the bootstrap test to investigate the zero coefficients in a mixed GWR model and Cai

et al. (2000) proposed a new wild bootstrap test for the goodness of fit of the varying
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coefficient models for nonlinear time series. In this work, we adopt the idea in Cai et al.

(2000) and employ a bootstrap test for testing a globally stationary regression relationship

in an SVCM. For individual stationarity test, we suggest the permutation test, which is an

easily understandable and generally applicable approach to testing problems. Our simulation

shows that the resulting testing procedure is indeed powerful and the bootstrap method does

give the right null distribution.

The rest of the paper is organized as follows. In Section 2 we give a short review of the

triangulations and propose our estimation method based on bivariate splines. Section 3 is

devoted to the asymptotic analysis of the proposed estimators. Section 4 extends the bivariate

splines to the penalized bivariate splines, in which smoothing parameters are used to balance

the goodness-of-fit and smoothness. Section 5 describes the bootstrap goodness of fit test to

examine the global stationarity, and the permutation test for each coefficient functions to

check individual stationarity. Section 6 presents simulation results comparing our method

with its competitors. An illustration of the proposed approach is provided in Section 7 by

an analysis of the particle pollution data. Section 8 concludes the paper. Technical details

and more numerical studies are provided in Supplemental Materials.

2. TRIANGULATIONS AND BIVARIATE SPLINE ESTIMATORS

Our estimation is based on bivariate splines over triangulations (BST). Below we briefly

introduce the techniques of triangulations and the bivariate spline smoothing for SVCMs.

2.1. Triangulations

Triangulation is an effective tool to handle data distributed on irregular regions with complex

boundaries and/or interior holes. In the following we use τ to denote a triangle which is a

convex hull of three points not located in one line. A collection4 = {τ1, ..., τK} of K triangles
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is called a triangulation of Ω = ∪Kj=1τj provided that if a pair of triangles in4 intersect, then

their intersection is either a common vertex or a common edge. Without loss of generality,

we assume that all Ui’s are inside triangles of 4, that is, they are not on edges or vertices

of triangles in 4. Otherwise, we can simply count them twice or multiple times if any

observation is located on an edge or at a vertex of 4.

There are quite a few packages available that can be used to construct a triangulation.

For example, one can use the “Delaunay” algorithm to find a triangulation; see MATLAB

program delaunay.m or MATHEMATICA function DelaunayTriangulation. “DistMesh”

is another method to generate unstructured triangular and tetrahedral meshes; see the

DistMesh generator on http://persson.berkeley.edu/distmesh/. A detailed description of the

program is provided by Persson and Strang (2004). In all the simulation studies and real

data analysis below, we used the “DistMesh” to generate the triangulations.

2.2. Bivariate spline estimators

For a nonnegative integer r, let Cr(Ω) be the collection of all r-th continuously differentiable

functions over Ω. Given a triangulation 4, let Srd(4) = {s ∈ Cr(Ω) : s|τ ∈ Pd(τ), τ ∈ 4} be

a spline space of degree d and smoothness r over triangulation4, where s|τ is the polynomial

piece of spline s restricted on triangle τ , and Pd is the space of all polynomials of degree less

than or equal to d. Given {(Ui,Xi, Yi)}ni=1, we consider the following minimization problem:

min
sk∈Srd(4),k=0,...,p

n∑
i=1

{
Yi −

p∑
k=0

Xiksk(ui)

}2

.

We use Bernstein basis polynomials to represent the bivariate splines. For any k = 0, . . . , p,

let {Bj}j∈Jk be the set of degree-d bivariate Bernstein basis polynomials for Srd(4)

constructed in Lai and Schumaker (2007), where Jk denotes the index set of the basis

functions. Then we can write the function sk(u) =
∑

j∈Jk Bkj(u)γkj = Bk(u)>γk, where

6



Environmetrics

γk = (γkj, j ∈ Jk)> is the spline coefficient vector. Using the above approximation, we have

the following minimization:

n∑
i=1

{
Yi −

p∑
k=0

XikBk(Ui)
>γk

}2

. (2)

To meet the smoothness requirement of the bivariate splines, we need to impose some linear

constraints on the spline coefficients to enforces smoothness across shared edges of triangles.

Denote Hk the constraint matrix on the coefficients γk, which depends on the smoothness r

and the structure of the triangulation. Putting all smoothness conditions together yields

Hkγk = 0. We first remove the constraint via the following QR decomposition: H>k =

(Q1,k Q2,k)
(
R1,k

0

)
, where (Q1,k Q2,k) is an orthogonal matrix, and

(
R1,k

0

)
is an upper triangle

matrix. We then reparametrize using γk = Q2,kθk for some θk, then it is guaranteed that

Hkγk = 0. Thus, the minimization problem in (2) is now converted to a conventional

regression problem without any restriction:

n∑
i=1

{
Yi −

p∑
k=0

XikB
>
k (Ui)Q2,kθk

}2

. (3)

For simplicity, we assume B(u) = B0(u) = B1(u) = · · · = Bp(u) = {Bj(u)}j∈J , then

H0 = H1 = · · · = Hp and Q2 = Q2,0 = Q2,1 = · · · = Q2,p. In practice, if the coefficients are

of very different degrees of smoothness, one can choose different bivariate spline basis

functions with variable triangulations for different coefficient functions to guarantee sufficient

smoothness. Denote θ = (θ>0 ,θ
>
1 , · · · ,θ>p )> and let Xi = (1, Xi1, . . . , Xip)

>. Let B∗(Ui) =

Q>2 B(Ui). Then the minimization problem in (3) can be written as

n∑
i=1

{
Yi −

p∑
k=0

XikB
∗(Ui)

>θk

}2

. (4)
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Let “⊗” denote the Kronecker product. Solving the least squares problem in (4), we obtain

θ̂ =

[
n∑
i=1

{Xi ⊗B∗(Ui)} {Xi ⊗B∗(Ui)}>
]−1 n∑

i=1

{Xi ⊗B∗(Ui)}Yi. (5)

The BST estimator of βk(u) is β̂k(u) = B(u)>γ̂k, where γ̂k = Q2θ̂k, for k = 0, . . . , p.

3. ASYMPTOTIC RESULTS

This section studies the asymptotic properties of the proposed estimators. To discuss these

properties, we introduce some notation of norms. For any function g over the closure of

domain Ω, denote ‖g‖2
L2(Ω) =

∫
u∈Ω

g2(u)du1du2 the regular L2 norm of g, and ‖g‖∞,Ω =

supu∈Ω |g(u)| the supremum norm of g. For directions uj, j = 1, 2, letDq
uj
g(u) denote the q-th

order derivative in the direction uj at the point u. Let |g|υ,∞,Ω = maxi+j=υ ‖Di
u1
Dj
u2
g(u)‖∞,Ω

be the maximum norms of all the υth order derivatives of g over Ω.

LetW `,∞(Ω) = {g : |g|k,∞,Ω <∞, 0 ≤ k ≤ `} be the standard Sobolev space. Given random

variables Tn for n ≥ 1, we write Tn = OP (bn) if limc→∞ lim supn P (|Tn| ≥ cbn) = 0. Similarly,

we write Tn = oP (bn) if limn P (|Tn| ≥ cbn) = 0, for any constant c > 0. Also, we write an � bn

if there exist two positive constants c1, c2 such that c1|an| ≤ |bn| ≤ c2|an|, for all n ≥ 1.

For a triangle τ ∈ 4 defined in Section 2.1, let |τ | be its longest edge length, and ρτ be

the radius of the largest disk which can be inscribed in τ . Define the shape parameter of τ

as the ratio πτ = |τ |/ρτ . When πτ is small, the triangles are relatively uniform in the sense

that all angles of triangles in the triangulation τ are relatively the same. Denote the size of

4 by |4| := max{|τ |, τ ∈ 4}, i.e., the length of the longest edge of 4.

In the following we introduce some technical conditions.

(C1) The joint density function of U = (U1, U2), fU (·), is bounded away from 0 and infinity.
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(C2) For any k = 0, . . . , p, there exists a positive constant Ck such that |Xk| ≤ Ck. The

eigenvalues φ0(u) ≤ φ1(u) ≤ · · · ≤ φp(u) of Σ(u) = E(XX>|U = u) are bounded

away from 0 and infinity uniformly for all u ∈ Ω; that is, there are positive constants

C1 and C2 such that C1 ≤ φ0(u) ≤ φ1(u) ≤ · · · ≤ φp(u) ≤ C2 for all u ∈ Ω.

(C3) For any k = 0, . . . , p, the bivariate function βk ∈ W `+1,∞(Ω) for an integer ` ≥ 1.

(C4) For every s ∈ Srd(4) and every τ ∈ 4, there exists a positive constant F1, independent

of s and τ , such that F1‖s‖∞,τ ≤
{∑

Ui∈τ, i=1,··· ,n s (Ui)
2
}1/2

, for all τ ∈ 4.

(C5) Let F2 be the largest among the numbers of observations in triangles τ ∈ 4. That

is,
{∑

Ui∈τ, i=1,··· ,n s (Ui)
2
}1/2

≤ F2‖s‖∞,τ , for all τ ∈ 4, where ‖s‖∞,τ denotes the

supremum norm of s over triangle τ . The constants F1 and F2 satisfy F2/F1 = O(1).

(C6) The triangulation 4 is π-quasi-uniform, that is, there exists a positive constant π such

that the triangulation 4 satisfies |4|/ρτ ≤ π, for all τ ∈ 4.

Conditions (C1) and (C2) are common in the nonparametric regression literature,

specifically, they are similar to Conditions (C1) and (C2) in Xue (2006) and Conditions

(C1)-(C3) in Huang et al. (2004). Condition (C3) describes the requirement for the

coefficient functions as usually used in the literature of nonparametric estimation. Condition

(C4) ensures the existence of a discrete least squares spline. In practice, it requires that

within each triangle, the number of data points should not be too small. Condition (C5)

suggests that we should not put too many observations in one triangle. In Section 4, we

describe the penalized least squares spline fitting so that Conditions (C4) and (C5) can be

relaxed in the application, for example, F1 can be zero for some triangles. Condition (C6)

suggests the use of more uniform triangulations with smaller shape parameters and this

condition can be automatically handled via delaunay and distmesh triangulation program

in MATLAB/MATHEMATICA.
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The following theorem provides the convergence rate of β̂k(·). The detailed proofs of this

theorem are given in the supplemental materials.

Theorem 1 Suppose Conditions (C1)-(C6) hold, then for any k = 0, . . . , p, the

bivariate penalized estimator β̂k(·) is consistent and satisfies that ‖β̂k − βk‖L2(Ω) =

OP

(
F2

F1
|4|`+1 + 1√

n|4|

)
.

Theorem 1 implies, if F2/F1 = O(1) and the number of triangles Kn and the sample

size n satisfy that Kn � n1/(`+2), then the BST estimator β̂k has the convergence rate

‖β̂k − βk‖2
L2(Ω) = OP (n−(`+1)/(`+2)), which is the optimal convergence rate in Stone (1982).

4. BIVARIATE PENALIZED SPLINE ESTIMATORS

When we have regions of sparse data, bivariate penalized splines, as a direct ridge regression

shrinkage type global smoothing method, provide a more convenient tool for data fitting than

the BST approach presented in Section 2.2. In this section, we introduce a computationally

efficient and stable method to estimate the regression coefficients based on the bivariate

penalized splines over triangulations (BPST). In this approach, roughness penalty parameters

are used to balance the goodness-of-fit and smoothness. The number and shape of the

triangles in triangulation are no longer crucial, compared with the BST in Section 2.2,

as long as the minimum number of triangles is reached. To define the BPST method, let

E(g) =

∫
Ω

{
(D2

u1
g)2 + 2(Du1Du2g)2 + (D2

u2
g)2
}
du1du2, (6)

which is similar to the thin-plate spline penalty (Green and Silverman, 1994) except the latter

is integrated over the entire plane R2. An advantage of this penalty is that it is invariant with

respect to Euclidean transformations of spatial coordinates, thus, the bivariate smoothing

does not depend on the choice of the coordinate system.
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Let λk ≥ 0 be the penalty parameter for coefficient function βk, k = 0, 1, . . . , p. Given

{(Ui,Xi, Yi)}ni=1, we consider the following regularized minimization problem:

min
sk∈∈Srd(4),k=0,...,p

n∑
i=1

{
Yi −

p∑
k=0

Xiksk(ui)

}2

+

p∑
k=0

λkE(sk),

where separate penalty parameters are used to allow different smoothness for different

coefficient functions. Using the bivariate splines approximation, we have the following

minimization:

n∑
i=1

{
Yi −

p∑
k=0

XikBk(Ui)
>γk

}2

+

p∑
k=0

λkγ
>
k Pkγk. (7)

where Pk is the diagonally block penalty matrix satisfying that γ>k Pkγk = E(B>k γk).

Similar to what has been done in Section 2.2, we remove the constraint via QR

decomposition of H>k , then the minimization problem in (7) is converted to:

n∑
i=1

{
Yi −

p∑
k=0

XikB
>
k (Ui)Q2,kθk

}2

+

p∑
k=0

λkθ
>
k Q>2,kPkQ2,kθk. (8)

Assuming B(u) = B0(u) = B1(u) = · · · = Bp(u) = {Bj(u)}j∈J , the minimization problem

in (8) can be written as

n∑
i=1

{
Yi −

p∑
k=0

XikB(Ui)
>Q2θk

}2

+

p∑
k=0

λkθ
>
k Q>2 PQ2θk. (9)

Let Λ = diag(λ0, λ1, · · · , λp) and DΛ = Λ⊗ (Q>2 PQ2). Solving the penalized least squares

problem in (9), we obtain

θ̂
∗

=

[
n∑
i=1

{Xi ⊗B∗(Ui)} {Xi ⊗B∗(Ui)}> + DΛ

]−1 n∑
i=1

{Xi ⊗B∗(Ui)}Yi.

Therefore, the penalized estimators of β̂∗k(u) = B(u)>γ̂∗k, where γ̂∗k = Q2θ̂
∗
k, k = 0, . . . , p.
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A crucial issue for the implementation of the above penalized smoothing is the selection

of the penalty parameters λk’s, which control the trade-off between the goodness of fit

and smoothness. A standard possibility is to select the penalty parameters using the cross-

validation approach, for example, multi-fold cross-validation (MCV) and generalized cross-

validation (GCV). Based on our simulation studies and real data applications, we find that

MCV and GCV usually yield similar results. In this work, we choose a common λ for all

coefficient functions, nevertheless, separate smoothing parameters for coefficient functions

can be adopted with heavier computing; see the discussions in Ruppert (2002).

5. TESTS FOR NONSTATIONARITY

5.1. Goodness-of-fit test

Statistical tests for examining if some of the coefficients vary over the space are fundamental

in achieving a valid interpretation of spatial non-stationarity of the regression relationship.

To test whether model (1) holds with a specified parametric form such as linear regression

models, we propose a bootstrap goodness-of-fit test based on the comparison of the residual

sum of squares (RSS) from both parametric and nonparametric fittings.

Consider the null hypothesis

H0 : βk(u) = βk(u;ρ), 0 ≤ k ≤ p, (10)

where βk(·;ρ) is a given family of functions indexed by unknown parameter vector ρ. Let ρ̂

be an estimator of ρ. The RSS under H0 (RSS0) and the RSS corresponding to model (1)

(RSS1) are

RSS0 =
n∑
i=1

{
Yi −

p∑
k=0

Xikβk(Ui; ρ̂)

}2

, RSS1 =
n∑
i=1

{
Yi −

p∑
k=0

Xikβ̂k(Ui)

}2

.
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The test statistic is defined as

Tn = (RSS0 − RSS1)/RSS1 = RSS0/RSS1 − 1, (11)

and we reject the null hypothesis (10) for large values of Tn. Due to the feature of less

assumption on the distribution of the error term of the model, bootstrap is a good technique

for testing the nonstationarity for the spatially varying coefficient models. We use the

following nonparametric bootstrap approach (Cai et al., 2000) to evaluate the p-value of

the test.

Step 1. Based on the data {(Ui,Xi, Yi)}ni=1, obtain the following residuals ε̂i = Yi −∑p
k=0Xikβ̂k(Ui), i = 1, . . . , n, and calculate the centered residuals ε̂i − ε̂, where

ε̂ = 1
n

∑n
i=1 ε̂i;

Step 2. Generate the bootstrap residuals {ε∗i }ni=1 from the empirical distribution function of

the centered residuals ε̂i − ε̂ in Step 1, and define Y ∗i =
∑p

k=0 Xikβk(Ui; ρ̂) + ε∗i ;

Step 3. Calculate the bootstrap test statistic T ∗n based on the sample {(Ui,Xi, Y
∗
i )}ni=1;

Step 4. Repeat Steps 2 and 3 B times and obtain a bootstrap sample of the test statistic Tn

as {T ∗nb}Bb=1, and the p-value is estimated by p̂ =
∑B

b=1 I(T ∗nb ≥ Tobs)/B, where I(·)

is the indicator function, and Tobs is the observed value of the test statistic Tn by

(11); or reject the null hypothesis H0 when Tn is greater than the upper-α quantile

of {T ∗nb}Bb=1.

Note that the nonparametric estimate is always consistent, no matter the null or the

alternative hypothesis is correct. So here we bootstrap the centralized residuals from the

nonparametric fit instead of the parametric fit, and this should provide a consistent estimator

of the null hypothesis even when the null hypothesis does not hold. As proved in Kreiss

et al. (2008), which considered nonparametric bootstrap tests in a general nonparametric

regression setting, asymptotically the conditional distribution of the bootstrap test statistic
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is indeed the distribution of the test statistic under the null hypothesis, as long as ρ̂ converges

to ρ at the root-n rate.

5.2. Testing individual function stationarity

One important question arose in varying coefficient literature is that “Does a particular set

of local parameter estimates exhibit significant spatial variation?”. To answer this question,

we focus on testing the following null hypothesis

H0k : βk(u) = βk, v.s. H1k : βk(u) 6= βk, for a fixed k = 0, . . . , p. (12)

To conduct a hypothesis test, the variability of the local estimates can be used to examine

the plausibility of the stationarity assumption held in traditional regression (Brunsdon et al.,

1996, 1999). Specifically, for a given covariate function βk at location i, suppose β̂k(ui) is

the BST or BPST estimate of βk(ui). If we take n values of this parameter estimate (one for

each location point within the region), an estimate of variability of the parameter is given

by the variance of the n parameter estimates.

The test statistic is defined as

Vnk =
1

n− 1

n∑
i=1

(
β̂k(Ui)− β̂k

)2

, (13)

and we reject the null hypothesis (12) for large values of Vnk.

The next stage is to determine the sampling distribution of Vnk under the null hypothesis.

Under H0k, any permutation of Ui amongst the data points is equally likely. Thus, the

observed value of Vnk could be compared to the values obtained from randomly rearranging

the data in space and repeating the BPST procedure. The comparison between the observed

Vnk value and those obtained from a large number of randomized distributions can then form

the basis of the significance test.
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Step 1. Randomly shuffle the n locations and obtain {U∗i }ni=1;

Step 2. Calculate the test statistic V ∗nk based on the sample {(U∗i ,Xi, Yi)}ni=1;

Step 3. Repeat Steps 1 and 2 B times and obtain a sample of the test statistic V ∗nk as

{V ∗nk,b}Bb=1, and the p-value is estimated by p̂ =
∑B

b=1 I(V ∗nk,b ≥ Vk,obs)/B, where Vk,obs

is the observed value of the test statistic Vnk by (13), or reject the null hypothesis

when Vnk is greater than the upper-α quantile of {V ∗nk,b}Bb=1.

6. SIMULATION

In this section, we analyze synthetic data generated from the model to assess the validity

of the proposed estimation and inference procedure based on BST and BPST smoothing

methods. We also implement the GWR method to each of these artificial data and compare

the estimator with our proposed ones.

To obtain the BST and BPST estimators, we set degree d = 2 and smoothness r = 1

when generating the bivariate spline basis functions. The supplementary materials provide

more simulation results with different values of d and different triangulations. For BPST, a

common penalty λ for all coefficient functions is selected using 5-fold cross-validation from

a 9-point grid, where the values of log10(λ) are equally spaced between −2 and 2. For the

GWR method, we use the “spgwr” R package to obtain the GWR estimator. In all simulation

studies, the total number of replications is 500.

6.1. Simulation study 1

Following Shen et al. (2011), the spatial layout in this example is designated as a [0, 6]2

domain, and the population is collected at N = 100× 100 lattice points with equal distance

between any two neighboring points along the horizontal and vertical directions. At each

location, the response variable is generated by Yi = β0(Ui) +Xiβ1(Ui) + εi, i = 1, . . . , N ,
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where Xi is generated randomly from a Uniform(0,2) distribution. The random error,

εi, i = 1, . . . , n, are generated independently from N(0, 1), and the coefficient functions are

β0(u1, u2) = 2sin
(πu1

6

)
, β1(u1, u2) =

2

81
{9− (3− u1)2}{9− (3− u2)2}. (14)

See Figure 1 (a) and (b) for the contour plots of the two true coefficient functions. We

randomly sample n = 500, 1000 and 2000 points from the 100× 100 points in each Monte

Carlo experiment.

[Figure 1 about here.]

Figure 1 (c) shows the triangulation used to obtain the BST and BPST estimators, and

there are 13 triangles and 12 vertices in this triangulation. The mean squared estimation

error (MSE) and mean squared prediction error (MSPE) for the estimators of the coefficient

functions, as well as the MSPE of the response variable Y , are computed using:

MSE(β̂k) =
1

n

n∑
i=1

{
β̂k(Ui)− βk(Ui)

}2

, MSPE(β̂k) =
1

N

N∑
i=1

{
β̂k(Ui)− βk(Ui)

}2

, k = 0, 1,

MSPE(Ŷ ) =
1

N

N∑
i=1

(Ŷi − Yi)2.

In addition, we report the bias (BIAS) of σ̂2 = 1
n

∑n
i=1(Yi − Ŷi)2 in estimating the true

variance of errors σ2. All the results are summarized in Table 1.

[Table 1 about here.]

We compare the proposed BST and BPST with GWR by evaluating the estimation

accuracy and their predictive accuracy of the spatial pattern. As the sample size increases,

all three estimators tend to result in better performance in terms of MSE, MSPE and BIAS.

Moreover, regardless of the sample size, both the BST and BPST estimators outperform

the GWR estimator. Compared with the BST estimators, the BPST estimators are more
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stable, especially when the sample size is small, and the difference between the BST and

the BPST estimators is getting smaller as the sample size increases. The supplementary

materials provide more simulation results with different triangulations, which suggest that

the number of triangles or the number of basis functions only have a little effect on the BPST

estimator, especially when there is a sufficient number of triangles.

Figure 2 visualizes the estimated surfaces of β0(·) and β1(·) using BST, BPST and GWR,

which are based on one typical replication with n = 2000. These plots suggest that the BPST

method is able to estimate the spatial pattern with the greatest accuracy, followed by the

BST method, and the GWR is not able to capture the spatial pattern very accurately.

[Figure 2 about here.]

In terms of the computing, since the GWR technique is largely based on kernel regression,

a locally weighted regression is required at every single point in the dataset, which results

in a great computational complexity. In contrast, both BST and BPST can be formulated

as one single least squares problem, thus, the computing is very easy and fast. The last

column (Time) in Table 1 summarizes the average computing time per iteration in seconds

for each method. All the methods are implemented using a personal computer with Intel(R)

Core(TM) i5 CPU dual core @ 2.90GHz and 8.00GB RAM. Specifically, one can see that as

the sample size increases, the computational time for GWR method increases dramatically

while BST and BPST almost provide a linear complexity of the sample size when the number

of triangles is much less than the sample size.

As one of the most important inferences in the GWR literature, the test for a globally

stationary regression relationship can provide the information that a SVCM is really

necessary for the given data. Next we investigate the performance of the proposed bootstrap

test described in Section 5.1. We consider the following hypothesis:

H0 : βk(u) = βk, k = 0, 1 v.s. H1 : βk(u) 6= βk, for at least one k.
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Note that H0 corresponds to the ordinary linear regression model. The power function is

evaluated under a sequence of the alternative models indexed by δ:

H1 : βk(u) = β̄0
k + δ(β0

k(u)− β̄0
k), k = 0, 1, (0 ≤ δ ≤ 1), (15)

where β0
k(u), k = 0, 1, are given in (14), and β̄0

k is the average height of β0
k(u), and in

our simulation, β̄0
0 = 1.2604, β̄0

1 = 0.8710. The parameter δ is designated different values to

evaluate the power of the test. The null hypothesis corresponds to δ = 0 in the coefficients.

We apply the bootstrap goodness-of-fit test in a simulation with 500 replications of sample

size n = 500, 1000, and record the relative frequencies of rejecting H0 under the significance

level α = 0.05. For each realization, we repeat bootstrap sampling 100 times. Figure 4

illustrates the empirical frequencies of rejecting H0 against δ using BPST and GWR methods.

For GWR, we use the “BFC02.gwr.test” function within the “spgwr” package in R, where

the test result is obtained by test statistics based on the RSS described in Fotheringham

et al. (2002). When δ = 0, these relative frequencies represent the size of the test. For

BPST, the relative frequency is 0.060, which is fairly close to the given significant level

5%. This demonstrates that bootstrap estimate of the null distribution is approximately

correct. However, the GWR gives 0.000, which is much smaller than the significant level. For

our BPST based bootstrap test, regardless of the sample size, the power increases rapidly to

one when δ = 0.2, suggesting that the proposed test is quite powerful. Overall, the proposed

test is of a higher power in identifying the varying coefficients than the GWR based test.

[Figure 3 about here.]

Next we conduct an individual stationarity test with H0k : βk(u) = βk v.s. H1k : βk(u) 6=

βk, for k = 0, 1. Similar to (15), the power function is evaluated under a sequence of the

alternative models indexed by δ, specifically, H1k : βk(u) = β̄0
k + δ(β0

k(u)− β̄0
k), (0 ≤ δ ≤ 1).

We apply the individual stationarity test described in Section 5.2 at significant level α =
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0.05 with n = 500, 1000, respectively. Similar as in the global stationarity, 500 replications

with B = 100 bootstrap samples in each replication are conducted to compute the p-value.

The individual test for the GWR is based on the test statistic proposed in Leung et al. (2000)

and implemented using the R function “LMZ.F3GWR.test”.

When δ = 0, the rejection frequencies of BPST are reasonably close to the given significance

level for both coefficient functions. Consider the specific alternative with δ = 0.4, where the

functions {βk(u)} under H1k are shown in Figure 4. Even with such a small difference, we

can correctly detect the alternative over 80% of the 500 simulations. With the value of δ

increasing, the rejection frequencies increase rapidly, and thus, the rejection frequency of

BPST is definitely high if coefficient functions are indeed spatially varying. However, for

GWR, the rejection frequencies are much higher than the given significance level, which

indicates a much larger Type I error. Although the results improve with the sample size

increasing, the rejection rates are still twice or three times higher than the significance level.

[Figure 4 about here.]

In summary, the simulation study demonstrates that the proposed bootstrap tests can well

approximate the null distribution of the test statistic even for moderate sample size.

6.2. Simulation study 2

In this simulation study, we consider a modified horseshoe domain constructed in Wood et al.

(2008). In particular, we divide the entire horseshoe domain evenly into N = 401× 901

grid points, which is considered as the population. We adopt the coefficient functions

shown in Figure 5 (a) and (b), where β0(·) is the same function used in Wood (2003) and

β1(u1, u2) = 4sin {0.05π(u2
1 + u2

2)}. The response variable Yi are generated from the following

model: Yi = β0(ui) +Xiβ1(ui) + εi, i = 1, . . . , N , where Xi is generated randomly from a

Uniform(0,2) distribution. The random error, εi, i = 1, . . . , n, are generated independently
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from N(0, 0.52) distribution. For each of the 500 Monte Carlo experiment, we randomly

sample n = 2000 and 5000 locations uniformly on the domain.

[Figure 5 about here.]

Figure 5 (c) shows the triangulation used to obtain the BST and BPST estimators, and

there are 77 triangles and 65 vertices in this triangulation. The results of MSE, MSPE and

BIAS based on 500 replications are summarized in Table 2, and the predicted surfaces from

one iteration when n = 2000 are demonstrated in Figure 6. These results highlight, on the

irregular domain, that both BST and BPST methods can provide more accurate and efficient

estimation than the GWR method.

[Table 2 about here.]

[Figure 6 about here.]

Another computational issue worth mentioning is that when GWR is used for prediction,

a locally weighted regression is also required at every single point in the predicting dataset.

In this example, the prediction is conducted over the entire 401× 901 = 361, 301 grid points.

Therefore, the entire process cannot be completed using personal computers, instead, the

GWR algorithm is conducted via cluster using a parallel computing of 24 general-purpose

compute nodes with 128GB RAM associated to each node and on average each iteration

takes more than 5 hours to complete for n = 2000. Unfortunately, when n = 5000, we are

not able to obtain any results using the same cluster with the same setting within one week.

On the other hand, for BST and BPST, the prediction can be done with one simple matrix

multiplication, and thus it is very fast even when the dataset is huge. For example, one

BPST-based iteration of size 5000 only takes about one minute on a personal computer with

Intel(R) Core(TM) i5 CPU dual core @ 2.90GHz and 8.00GB RAM.
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7. APPLICATION TO AIR POLLUTION DATA ANALYSIS

Recently, fine particles (PM2.5, particulate matter with diameter of 2.5 micrometers or less)

has become a major air quality concern since it poses significant risks to human health, such

as asthma, chronic bronchitis, lung cancer, atherosclerosis, etc. Many recent research works

(Tai et al., 2010; Hu et al., 2013; Russell et al., 2017, for example) suggest that the PM2.5

concentrations depend on meteorological conditions. To improve the current pollution control

strategies, there is an urgent need for a more comprehensive understanding of PM2.5 and a

more accurate quantification between the meteorological drivers and the levels of PM2.5.

In this section, we show the applicability of the proposed SVCM on a meteorological

dataset to study the effect of meteorological characteristics on air quality. In our study,

daily mean surface concentrations of total PM2.5 for the year 2011 are obtained from the

United States Environmental Protection Agency; meteorological drivers are provided by the

National Oceanic and Atmospheric Administration (http://www.esrl.noaa.gov/psd/);

daily total gridded precipitation (PPTN), surface wind speed (WS), surface daily minimum

air temperature (Tmin) and surface daily maximum air temperature (Tmax) are acquired from

Livneh data (Livneh et al., 2013); air relative humidity (RH) and total column cloud cover

(TCDC) are obtained from North American Regional Reanalysis. See Table 3 for details.

[Table 3 about here.]

Noting that there are some missing values in RH, TCDC and total PM2.5, we aggregate the

data by season and focus on the most severe polluted season in a year — winter (December,

January, February). We predict the PM2.5 for winter season using the proposed SVCM:

PM2.5 = β0(u) + β1(u)PPTN + β2(u)RH + β3(u)Tmin + β4(u)Tmax

+β5(u)WS + β6(u)TCDC + ε. (16)
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We also consider the multiple linear regression (MLR) without using the spatial information:

PM2.5 = β0 + β1PPTN + β2RH + β3Tmin + β4Tmax + β5WS + β6TCDC + ε. (17)

To evaluate different methods, we examine both the estimation accuracy and the prediction

accuracy of the MLR in (17), the GWR and the BPST in (16). The out-of-sample prediction

errors of each method are calculated by 10-fold cross validation. The MSE and MSPE of

three methods are summarized in Table 5. It is obvious that BPST estimator provides a

much more accurate estimation and prediction. Figure 7 (b)-(h) summarize the coefficient

estimation results via BPST.

[Table 4 about here.]

[Figure 7 about here.]

A natural question is if the coefficients are really varying over space in model (16). We

now use our proposed test procedure in Section 5 to answer this question. The p-values

of these tests are listed in Table 5. For the global stationary test, the p-value is smaller

than 0.001, so under the significance level α = 0.05 we conclude that at least one of the

coefficient is nonstationary over the entire United States. For the individual stationarity

test, the resulting p-values for the intercept, Tmax, WS and TCDC are all smaller than the

significant level α = 0.05, indicating that the coefficients β0(u), β4(u), β5(u) and β6(u) are

really varying over space. However, for PPTN, RH and Tmin, the p-value � α, so we don’t

have enough evidence to reject the null hypothesis. The estimated coefficient function plots

in Figure 7 confirm the conclusion of the proposed tests.

[Table 5 about here.]
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8. CONCLUDING REMARKS

In summary, the proposed method has the following advantages in analyzing the spatial

nonstationarity of a regression relationship for spatial data. First, comparing with GWR,

the proposed method is much more computationally efficient to deal with large datasets.

Specifically, the computational complexity of BST and BPST is O(nK2
n), which indicates

that it is almost linear in terms of the sample size. In addition, as a global estimation with an

explicit model expression, the proposed spline approach enables easy-to-implement prediction

compared to the local approaches. Second, the proposed method can overcome the problem

of “leakage” across the complex domains that many conventional tools suffer. Third, by

introducing the roughness penalty into the BST, the BPST can alleviate the adverse effect of

the collinearity problem in GWR (Wheeler and Tiefelsdorf, 2005) and provide more accurate

estimators of the coefficient functions. The BPST also easily allows different smoothness for

different functional coefficients, which is enabled by assigning different penalty parameters

accordingly. Finally, with increasing volumes of data being collected on the environment

through remote sensing platforms, complex sensor networks and GPS movement, this work

provides one feasible approach to study large scale environmental spatial data.

The proposed method in this article can be easily extended to semiparametric varying-

coefficient partially linear models (Brunsdon et al., 1999; Fotheringham et al., 2002; Fan

and Huang, 2005), where some coefficients in the model are assumed to be constant and the

remaining coefficients are allowed to spatially vary across the studied region.

In spatial data analysis, there are mainly two issues: spatial dependence and spatial

heterogeneity, and our paper focuses on the later one. To understand the theoretical behavior

of the estimators, we assume the errors are independent. Although this assumption is not

uncommon in the GWR literature, it is more realistic to relax the independence assumption.

The spatial dependence can be alleviated by choosing the optimal triangulation, it may not

fully vanish, and certainly there is more future work ahead to investigate this issue. Sun
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et al. (2014) proposed a semiparametric spatial autoregressive varying coefficient model:

Yi = α
∑
j 6=i

wijYj + X>i β(Ui) + εi, i = 1, . . . , n, (18)

where wij is the impact of Yj on Yi, for example, a specified physical or economic distance.

This model considers the neighboring effect and is thus able to take care of the spatial

dependence issue. We are interested in extending our work to this class of models for

irregularly spaced data over complex domains. However, it is challenging to define wij

(distance) for our method due to the “leakage” problem across complex boundary features.

Another interesting future work is the spatio-temporal extension to analyze data collected

across time as well as space. We might be able to establish some promising theoretical results

under some dependent error assumptions if letting the number of time points go to infinity.

We believe more careful and intensive future work is necessary in these directions.
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Figure 1. Simulation study 1: plots of (a) true β0; (b) true β1; (c) triangulation.
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Figure 2. Simulation study 1: estimated surface via (a) BPST; (b) BST; (c) GWR based on sample size n = 2000.
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Figure 3. Type I Errors and Power for Boostrap Tests in Simulation study 1: (a) H0 : βk(u) = βk, k = 1, 2 vs H1 : βk(u) =

β̄0
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Figure 4. Simulation study 1: coefficient functions under H1 when δ = 0.4.
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Figure 5. Simulation study 2: plots of (a) true β0; (b) true β1; (c) triangulation.
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Figure 6. Simulation study 2: estimated surface via (a) BPST; (b) BST; (c) GWR based on sample size n = 2000.
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(a) Triangulation with Data Points (b) β0 (Intercept)

(c) β1 (PPTN) (d) β2 (RH)

(e) β3 (Tmin) (f) β4 (Tmax)

(g) β5 (WS) (h) β6 (TCDC)

Figure 7. Estimates of the coefficient functions of the SVCM for PM2.5 data.
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TABLES

Table 1. Estimation and prediction results for Simulation study 1.

n Method
β0 β1 σ2 Y

Time
MSE MSPE MSE MSPE BIAS MSPE

500
BST 0.1046 0.1128 0.0840 0.0904 0.0642 1.0345 0.087

BPST 0.0628 0.0637 0.0548 0.0559 0.0527 1.0165 1.102
GWR 0.1708 0.1763 0.1379 0.1434 0.1439 1.1063 28.152

1000
BST 0.0479 0.0496 0.0410 0.0421 0.0427 1.0030 0.121

BPST 0.0340 0.0345 0.0326 0.0331 0.0381 0.9984 2.138
GWR 0.1127 0.1144 0.0889 0.0907 0.1097 1.0505 102.666

2000
BST 0.0241 0.0244 0.0219 0.0222 0.0300 0.9897 0.186

BPST 0.0204 0.0205 0.0205 0.0207 0.0266 0.9888 4.902
GWR 0.0726 0.0733 0.0564 0.0571 0.0798 1.0122 441.230
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Table 2. Estimation and prediction results for Simulation study 2.

n Method
β0 β1 σ2 Y

Time
MSE MSPE MSE MSPE BIAS MSPE

2000
BST 0.0312 0.0348 0.0237 0.0269 0.0129 0.2647 12.376#

BPST 0.0130 0.0132 0.0080 0.0081 0.0060 0.2588 29.589#

GWR 0.0325 0.0337 0.0240 0.0248 0.0306 0.2697 18280.320∗

5000
BST 0.0117 0.0120 0.0085 0.0088 0.0051 0.2560 14.033#

BPST 0.0070 0.0070 0.0042 0.0042 0.0028 0.2545 64.016#

GWR –∗∗ –∗∗ –∗∗ –∗∗ –∗∗ –∗∗ –∗∗

# The average computational time is measured using personal computer with Intel(R)
Core(TM) i5 CPU dual core @ 2.90GHz and 8.00GB RAM.
∗ The average computational time is measured by cluster using a parallel computing of 24
general-purpose compute nodes with 128GB RAM associated to each node.
–∗∗ We don’t have results here because the computing time for 500 iterations in total is
more than 168 hours even using cluster with 24 cores parallelly.
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Table 3. Meteorological parameters.

Variable Meteorological Parameter
PPTN Daily total precipitation (mm)

RH Air relative humidity at 2m (%)
Tmin Surface daily minimum air temperature (◦C)
Tmax Surface daily maximum air temperature (◦C)
WS Surface wind speed (m/s)

TCDC Total column cloud cover (%)
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Table 4. Estimation and prediction accuracy for air pollution data.

OLS GWR BPST
MSE 18.68 8.44 7.03

MSPE 18.95 13.20 12.30
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Table 5. Hypothesis tests with their p–values of the tests for PM2.5 data.

Null hypothesis Corresponding variables p-Value
β0(u) = β0 Intercept < 0.001
β1(u) = β1 PPTN 0.406
β2(u) = β2 RH 0.688
β3(u) = β3 Tmin 0.430
β4(u) = β4 Tmax 0.020
β5(u) = β5 WS < 0.001
β6(u) = β6 TCDC < 0.001
βk(u) = βk, k = 0, 1, . . . , 6 < 0.001
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